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In this paper,  we consider "regions of  attainability" in certain state spaces 
as a function of the initial state under a well-defined and physically relevant 
class of  processes. These processes are the continuous and "chaos-enhancing" 
processes (in the sense of  Ruch and Uhlmann).  It turns out that these sets 
have complicated geometrical structures: They are polyhedra which are gen- 
erally non-convex. The proof  - a rather geometrical one - is given. A theorem 
of Hardy,  Littlewood, and Polya and properties of  bistochastic matrices are 
used crucially. 
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I. Introduction 

1.1. General remarks 

This investigation is based on the concept of  the order structure o f  states, which 
was put forward independently by Ruch and Sch6nhofer [8], and Uhlmann [9] 
in the early 70's. Whereas Ruch and Sch6nhofer considered classical distributions 
following their concept of  "measuring the extent of  identification", Uhlmann 
9ursued his idea that there should be a finer distinction for (quantum) states 
than that of  merely being pure or mixed. The result was that it seemed reasonable 
to introduce a partial order within very general state spaces, symbolically: "> -" ,  
in words: "more  mixed than".  

There are many hints (esp. from the quantum case) that this concept should be 
a useful frame to understand more about irreversibility on a rather fundamental  
level. For a recent survey on this line, see, e.g. Alberti and Uhlmann [2, 3]. 
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As is known, dissipative motion shows the following property: coming from the 
boundary of the state space into the interior, the states "lose structure ~' (or purity, 
or information). This feature of dissipative systems can be reflected by the partial 
order very clearly. Therefore soon after introducing this relation, one started to 
study processes which are defined just by the property that every later state is 
more mixed than every earlier one. These processes are called mixing enhancing 
processes (or c-processes). 

It is also known that a lot of processes which appear in physics or chemistry are 
of this kind. We only mention examples of the type 

d / dt p i = y" LikP k 
k 

(i) 

and 

(ii) d / dt p ~ = Z ( AqktP ~ t -- AklijP~PJ) �9 
j ,k,I  

The former is the well-known master equation, the latter is the Boltzmann- 
Carlemann equation (see Chap. 5). 

In this paper, we won't  study c-processes in detail but under the aspect of the 
attainability o f  states. By this term we abbreviate the problem whether or not 
states are attainable from a fixed initial state by a certain process. This question 
will be answered for continuous c-processes over classical discrete states, i.e. for 
finite dimensional probability vectors. We are able to provide an explicit 
geometrical construction for their sets of attainability. Moreover, we can prove 
essential properties of them: they are polyhedra which turn out to be not convex, 
in general. All proofs use elementary tools like results on double stochastic 
matrices, convexity arguments, and topology. 

The following parts of the introduction provide a simple physical model which 
is convenient for the construction procedure and a survey of the notations and 
definitions we will use. The second chapter presents the origin of the problem 
and earlier contributions to its solution. In the third chapter the sets of attainability 
for heat conduction processes will be constructed. In the following chapter we 
will show that these sets are identical with the sets which correspond to the much 
more general continuous c-processes. The fifth chapter closes the paper with 
some discussion. 

1.2. Our model system 

In order to illustrate the problem we now introduce a special physical system. 

Let us consider n (n finite) bodies with equal heat capacity. Each of these bodies 
should be in thermal equilibrium with itself and therefore characterized by just 
one temperature. This temperature is the only property of the body we are 
interested in. 

If  the bodies are numbered (arbitrarily, but once chosen then fixed forever), then 
the state of our system is completely described by its temperature distribution. 
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Next  we consider  a " m e c h a n i s m "  in order  to change states: For  this purpose  we 
assume an "ideal  wire". By this wire we connect  any two bodies for  any period 
o f  time. An  " a m o u n t  o f  heat"  will be t ranspor ted f rom the hotter  b o d y  to the 
cooler  one. This procedure  is called a " two-body  heat exchange".  Then we connect  
two other  bodies and so on. 

Later - and this is the essential result - we will replace this special physical 
mechanism by a much more  general, but  also well characterized class o f  processes, 
the so-called "con t inuous  c-processes".  

The problem we solved is: give a description o f  the set o f  all temperature 
distributions (i.e. all states) attainable by these processes starting at an arbitrary 
initial state. 

1.3. Notations, definitions etc. 

To deal with the above problem we provide some tool: Let the bodies be numbered  
by i ~ {1, 2 , . . . ,  n} := 1"1, then p~ denotes the temperature  o f  the ith body.  The 
temperatures  o f  all bodies are collected in a vector p := (p~, p z , . . . ,  p n). According 
to the first law of  the rmodynamics  their sum is constant  and will be - without  
loss o f  generali ty - normal ized to 1. Therefore we can consider the p as probabil i ty 
vectors. Thus the whole state space is: 

~":= {P: P=(pl' p2'' " ", Pn)' Pi>O,~ pi= I} �9 

We further recall the so-called "bis tochast ic"  matrices: 

matrix / 

One can see that these matrices are stochastic ones with the addit ional  proper ty  
o f  keeping the equipart i t ion e := (1/n, 1/n,. . . ,  1/n) invariant. N o w  we consider 
a subset o f  BSTn: 

K(2~, := {T: T 6  BST,  and has the structure 

k 1 
1 

T =  
a 1 - a  

1 .  
1 

1 - a  a 

k 

with a c [�89 1] and 1 -< k < l_< n, all other  matrix elements are equal to 0}. 
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The reader should realize that these matrices applied to a state effect just such 
two-body heat exchanges as explained in Sect. 1.2. Therefore we are now able 
to give a precise formulation of the set of those states attainable by a succession 
of these exchanges, namely 

KW(p):={q: q= Tp with T=lq~ T~, TieK(z)n,p, qeb~ pfixed}. 

The "w"  stands for "W~irme"; for short we call a product 1-[~ T,. with T~ e K(2), 
applied to a state a "w-process", see also Sect. 4. We take this occasion to fix 
a result which follows immediately from the definition of KW(p): 

Lemma 1. Let qe KW(p) and q# p. Then K~(q)~ KW(p). (lff q =p the equality 
sign is true.) 

Now we are going to define a relation between states, compare Uhlmann [2]: 
we say the state q is more mixed than the state p if there exists a T e BST,, so 
that q = Tp, symbolically q > p. (In another approach this is not a definition but 
a theorem by Hardy et al. [5]). Using this relation - which is a partial order - 

we set: 

G(p) := {q: q > p, p, q e SP~, p fixed} 

Finally we recall a famous structure theorem: 

Theorem 1 (Birkhoff). BST, is identical with the convex hull of the permutation 
matrices of dimension n. 

1.4. The geometrical aspect 
Now we present a suitable representation of the state spaces. As one sees the 
cases n = 1 and n = 2 are not very interesting: For n = 1 nothing will happen and 
two bodies can equalize their temperatures, partially or totally. Therefore we will 
not mention the two cases throughout this paper and start at n = 3:.9~ should 
be a regular triangle, its'altitudes are the axes pl, p2 and p3. Because of ~ p i =  1 

p3-o xis 

(0,o.1) 

Fig. 1. The state space 5P3 

(0,1,o) 
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the problem becomes a two-dimensional one, compare Fig. 1. The 50~ with n > 3 
are introduced recurrently: (n + 1) pieces of  50n form the "boundary-hyperfaces"  
of  50,+v Thus 5~ is a tetrahedron with analogous "tetrahedron coordinates",  and 
SO on.  

Fig. 1 also shows that there is a natural division of 50~ into n ! cells. This reflects 
- see the Birkhoff theorem - the permutation symmetry of the situation, because 
e.g. there are n ! possibilities to number  the bodies. 

A state the numbering of  which fulfills p~>_p2>_... > p ,  is called a canonical 
one and a state that has some pg equal is called a symmetrical one. 

Sometimes we also number  the cells by es, f= 1, 2,..., n !. The cell of  the canonical 
state is called elementary cell. From now on it will be called e ~ and the others 
remain unspecified. Finally we assume that the initial state is always a canonical 
one. It is clear that this is only a question of the numbering of  the bodies. 

2. W h a t  was  k n o w n  before?  

The origin of  our investigation lies in a mathematical  result collected and newly 
proved by Hardy et al. [5]. They themselves used an old Muirhead [7] theorem 
of 1903. Equipped with the physical background explained in Sect. 1.2. one can 
also find it with Alberti and Uhlmann [2]. 

For convenience we present it in two equivalent formulations, the latter one is 
already adopted to our aim. 

T h e o r e m  2' (Muirhead). Let p, q c 50n with pl > pZ> . . . > p ,  and ql > q2> . . . >_ 
q". Then G(p)~q<=>q~ KW(p).  

Proof ( 3 ) .  This can be found with Hardy et al. [5], Theorem 45, Lemma 2 
(Attention: > is used in the opposite direction !). ( ~ ) :  this is clear, because 
K(2)~ c BSTn. [] 

T h e o r e m  2". Assumptions as in Theorem 2'. Then G(p)  n e 1 = KW(p)  c~ e 1. 

Note that Theorem 2" has an impressive verbal formulation: " In  the elementary 
cell, K ~ ( p )  and G(p)  coincide". 

Nevertheless it is also clear that (KW(p)c~ e l ) ~  KW(p)  is valid, because the 
two-body exchanges will destroy the canonical order in general and the state will 
leave the elementary cell. 

On the other hand it is true that: KW(p) ~ O(p) ,  because e.g. the permuted states 
are in G(p) ,  but surely not in K ~ ( p ) ,  since they are forbidden by the second 
law of thermodynamics.  

Thus we have: G(p)c~ e l ~  K W ( p ) ~  G(p) ,  and therefore a rough hint where to 
look for the sets KW(p).  

For n = 3 the situation is illustrated in Fig. 2. (In order to construct G(p)  the 
Birkhoff theorem is used again.) 



368 C. Zylka 

Fig. 2. An illustration of Muirhead's theorem 

3. The first result: the sets K(p) 

3.1. An overture 

To get started the solution for n = 3 is immediately  given: The strongly f ramed 
area is KW(p), which turns out  to be o f  nontrivial  shape. The shaded area is that  
subset o f  it which was previously known - according to Theorem 2" - and the 
hexagon of  Fig. 2 is G(p). This chapter  will clarify that this solution is true and 
what  can be generalized for  higher dimensions.  

For  better readabili ty we divide it into some steps. 

3.2. An extension of Theorem 2" 

It is possible to show that  for an arbitrary p e 5e,, i.e. not  necessarily out o f  e 1, 
there exists a p -depend ing  ne ighbourhood  E(p) such that  KW(p) and G(p) 
coincide in it. In  o t h e r  words,  we want  to replace the e ~ o f  Theorem 2" by 
convenient  E(p) and prove their existence by construct ing them. 

At first we define an addi t ional  e j, namely:  e~ = CSe, = Rn-I\6P,. Doing  this we 
leave the physical  region, but  we gain mathemat ical  uniformity.  We note that all 
e J, j = 0, 1 . . . .  , n ! are closed sets with non-empty  interiors. 

Fig. 3. The solution: K(p) for n =3 
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It is not impor tant  that  p and q are out o f  e 1, it is sufficient for them to be from 
one and the same cell. By s imultaneous denumber ing  we can trace them back to 
e 1. Therefore we have: 

Lemma 2. Le tp~  e j , j ~ { 1 , . . . ,  n!}. Then KW(p) c~ e j-- G(p)c~ e j. 

N o w  we consider  symmetr ic  states. Such states belong to more than one cell. We 
call J(p)  := {j: p ~ ei}. Lemma 2 is valid for each of  these cells: KW(p) c~ e j = 
G(p) c~ e j, Vj c J(p).  The union  over these j gives KW(p) c~ E(p)  = G(p)  c~ E(p)  
with E(p)  := u e j, Vj c J(p).  

One can easily prove that  p always lies in the interior o f  E(p) ,  i.e. E(p)  is, 
indeed, a ne ighbourhood  of  p. Thus we arrive at: 

Theorem 2'". For an arbitrary p~SP, the construction p o E ( p )  gives a closed 
neighbourhood E(p)  with the property KW(p) c~ E(p)  = G(p)  c~ E(p)  =: ~p(p). 

3.3. An  explicit description o f  q~(p) 

Also the sets r  m e n t i o n e d  in Theorem 2" can be cons t ruc ted  expl ic i t ly  1. On 

this occas ion  we in t roduce  some "s t ra teg ic"  states,  which are useful  for  la ter  
cons idera t ions .  

Take  a state p c  5P, (n ->3) .  A p p l y  to this state the fo l lowing (n • n ) -ma t r i ces ,  
which  are also a subset  o f  BST, :  

2 

1 1 
2 

1 

/�89 1 1 

3 3 3 

3 3 

1 ! 
2 2 

1 1 
2 2 

1 

1 
1 1 1 
3 3 3 

3 3 3 

1 1 ! 
3 3 

1 

, . . . i  

9 

2 

1 

1/n 1 / n . . . 1 / n  t 
U n .  1/n 

1/n 1/n " l /n /  

(Principle: The blocks are "growing"  

and "wander ing"  along 

the main diagonal.)  

For important hints concerning this procedure the author is indebted to Prof. Dr. J. Kerstan (Jena) 
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The new states obtained - something like "equalized partit ions" - are called 
"child-points ''2 or more exactly child-points of  first order. Child-points of  first 
order child-points are child-points of  second order, etc. 

Those special child-points which are produced by matrices with �89 are 
called "daughter-points" .  

Then Kerstan could prove: 

~ (p )  = convex hull of  p and its child-points of  first order. 

3.3. Kg(p) is built up 

Connecting such "splinters" ~(q)  we construct the next set Kg(p) (g for 
geometrical). The child-points determine how it happens: 

~,O)(p) := ~(p) 

~,(n + 1)(p):= r ( ~  ~(,)), 
{n} means that q runs over all child-points of  nth order. 

Then we define tentatively: 

Kg(p) := lim ~<O(p) 
i--~Ct3 

But one can show that there is an integer M (M depends on the dimension, of 
course) with limi~,oo ~b <~ = ~(~>. (The smallest of these numbers should be taken 
for M.) In other words: after a finite number  of  "procreat ions" the procedure 
becomes idempotent: 

Lemma 3. Let p e 5vn and consider the sequence ~b(~ Then 3 M  < ~,  so that 
~/(M--l) ~ ~/(M) = ~(M+I)  

Proof At first we show that Lemma 1 is valid especially for child-points. (It  is 
enough to consider those of  first order.) 
(i) For daughter-points it is clear, because q ~ K(p)  is valid by definition. 

(ii) For the other ones we use Theorem 2". Let q be one of these, then by 
definition, q c  ~ (p )  = K(p)  c~ E(p). Thus we have esp. q~ K(p).  

This means that the assumptions of  Lemma 1 are fulfilled and K (q) c K (p)  holds 
for an arbitrary child-point q of  p. 

A sequence {p, q', q ' , . . .  }, appearing in the construction procedure, where the 
following point is a child-point of  the former one is called a "line of ancestors". 
Now it could be seen that the creation of K(p)  by the sets 0 (0 is linked with a 
"tree" of  such ancestor-lines and we study how it works in detail. 

Starting with a single line we distinguish two cases: the line gets into a "new" 
cell, i.e. one in which no ancestor has been before or it gets into an old cell. In 

2 Because of the geometrical interpretation "state" and "point" are used as synonyms 
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the former case obviously a new contribution to K ( p )  is added. In the latter case 
the following happens. Let/~ be this cell and t~ the ancestor of t~ that has already 
been in /~. We know that K ( ~ ) c  K ( i ) ,  thus K ( ~ ) n / ~ ( ~ ) c  K( i )c~ /~(4) ,  i.e. 
~ ( ~ ) c  q~(4), and no new contribution appears. This is the mechanism of 
saturation. 

In reality the construction of K ( p )  results in a simultaneous creation of  many 
ancestor-lines and we have to take into account their interactions. These will 
occur if two (or more, but it is enough to consider two) different lines get into 
a new cell. Let # and t~ be the last members of  these two different lines just 
arriving at the new cell /7. Then we have neither ~0(4) c q~(p) nor q~(4) ~ ~(P),  
but ~P(4) n q~(/i) =: qb(/~, q) ~ ~ .  Moreover, qb (/i, q) is again of this splinter-shape, 
i.e. 3~ with qb(/i, q ) =  ~(~). By virtue of this point ~ the two lines become 
comparable in the sense that one can switch into another line and can consider 
it as t h e p r o p e r  one, more formally: let #, 4 the respective child-points o f / i  and 
q, then ff c ~(#) ,  ~c  ~0(4), ~ ~o(/i), ~ ~o(4) , /~ q~(~), 4 ~ q~(r), and thus ~ ~(/ i)  
and p c  ~P(4). 

Because of the finite number of cells and the manner of procreation the last new 
cell is reached after a finite number of steps and in the next step the saturation 
as explained above happens. [] 

3.4. The connection between K W(p) and Kg(p) 

Theorem 3. Let p ~ 5f .. Then K W ( p ) =- Kg(p) .  

Proof We take the definition of Kg(p)  and trace it back recurrently: 

Kg(p)  = ~b(M)(p)  

= ~b(M-~)(p)U ({M~I } ~0 (q)) 

(,) 

Considering p as order zero-child-point of p we can write compactly 

K~(t ,) = U ~(q) = U (~; W(q) • ~(q)) .  (**) 
{0... (M--l)} {0--- (M-l)} 

Now we make use again of the fact that Lemma 1 is also valid for child-points. 
Thus K W(q) c_ KW(p) holds for an arbitrary child-point q ofp.  (The equality sign 
ensures that zero order is also included.) Therefore we can replace all K W(q) by 
K~(p) :  

K ~(~,) = U (K W(p) ~ E(q)). (***) 
{ o - -  �9 (M-~)]- 
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On the other hand we obviously have: 

KW(p)= KW(p)n(b~  Cb~ 

= KW(p) n ( ( e ~  e I  u e 2 t j  �9 �9 �9 U e n ! ) ) ,  

The last bracket is to be understood as a "reservoir" of  cells eJ., so that there 
are enough of every kind. Now at first arbitrarily, we unite some e~ into some 
E j and write 

KW(p) = U (KW(P) n E J). 
J 

We recall the definition of the E(q):  they just consist of unions of  these e~, 
therefore we specify the E j just mentioned above to the E(q) and arrive at 

KW(p) = U (KW(p)nE(q) )  �9 (****) 
{o..-(M-l)} 

The comparison between (***) and (****) gives the statement. [] 

Therefore we set for future: KW(p) =- Kg(p) =: K(p).  

In this proof  there are also important hints as to the structure of  K(p).  Some 
essential properties are provided by 

Theorem 4. Let p c 5a~. Then K (p ) has the following properties: 
(i) K(p)  is a closed set. 

(ii) K(p)  is starlike with respect to e (and therefore also connected). 
(iii) K(p)  is in general not convex. 

Proof. At first we consider again (**) together with Theorem 2'": 

K(p)  = U q~(q) = U (G(q) c~ E(q)). (**) 
{ 0 - - .  ( M - l ) }  { 0 . . .  ( M - 1 ) t  

One can see that K(p)  is closed, because it is a finite union of a finite number 
of  intersections of closed sets. Secondly one realizes starlikeness with respect to 
e, since all q~(q) are convex and contain e. 

Concerning non-convexity: if it is known that for n = 3 K(p)  is not convex in 
general, then it is clear that also the higher-dimensional K(p)  must be so, since 
there are two-dimensional sections which are not convex. We give the proof  for 
n = 3 explicitly by carrying out the construction given in Sect. 3.3. (See Figs. 4 
and 5.) [] 

3.5. Remark 

Not all details of  the procedure for constructing K(p)  are known yet. Working 
with it one sees that there is some redundancy. One should expect that in the 
definition of the sequence ~b(~)(p) (see Sect. 3.3) q has only to run over the 
daughter-points (and not over all child-points). Moreover, one can prove that 
there are even daughter-points,  which are unnecessary. Therefore we formulate 

Problem 1. Find the minimal set of points necessary to construct K(p)!  
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Fig. 4. Construction of K(p) for n = 3. The first 
two procreations: 4, (l) and t) (2) 

Fig. 5. Construction of K(p) for n = 3. Continu- 
ation and saturation: ~b (3) and ~b (4) 

Also open  and interesting is 

Problem 2. Find M =  M(n) (i.e. the minimal number  of  steps necessary to 
construct  k(p)) for non-symmetr ic  p �9 5e. ! (For  n = 3, M - ~ 4  is true.) 

4. The second result: another characterization of K(p) 

Now we will present a further approach  to our  sets. Doing this we leave the 
special physical  mechanism and replace it by  well-defined mathematical  objects. 

A map R+~ t - p ( t ) e  5~n is called a process, for short {p(t)},~o. I f  in addit ion 
we have p( t") > p( t'), Vt', t" with 0 -  < t ' -  < t", then {p(t)},_o is called c-process 
(Lassner and Lassner [6]). (The " e "  stands for  "concave"  and comes from an 
equivalent characterizat ion o f  this partial order  by concave functionals.)  Being 
a subspace o f  R "-~ 5e, is equipped with the induced topology  and we can explain 
continuity:  let {p(t)},>o be a c-process and in addit ion l i m , . , o P ( t ) = p ( t 0 ) ,  Vt, 
to-> 0, then we call it a cont inuous  c-process or  cc-process. 
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Having this in mind, we define 

KCC(p) := {q: 3 co-process {p(t)}t_>o, so that p(0) =p and 

either q=p(t ' )  with 0 <  t '<co  or q = l imp(t)}  
t - ~ o o  

This definition makes sense, because Alberti and Crell [1] proved that especially 
cc-processes always converge. 

An easily demonstrable result is only mentioned: 

Lemma 4. Every w-process is a cc-process. 

Now we are going to prove 

I.emma 5. Let p e 6Pn and {p(t)}t~o a cc-process. Then follows {p(t)}z_>o c K(p).  

Proof. This lemma is a consequence of both "c" ,  namely (i) chaos-enhancing 
and (ii) continuous. (i) {p(t)},>o should be a c-process, hence p(t) e G(p(O)), 
V t - 0 .  (ii) From the existence of E(p(O)) and the continuity of the process we 
get: 3 T > 0, so that V t with 0 _< t <- T follows: p (t) c E (p (0)). For these t (i) and 
(ii) provide: p(t) c G(p(O)) c~ E(p(0)) .  Because of Theorem 2'" this means p(t) E 
K(p(O))nE(p(O)) and esp. p(t )cK(p(O)) .  Furthermore, Theorem 2'" also 
guarantees that the argument just used for t = 0 can be applied to an arbitrary 
later t'. Thus there only remains to show that ~tT<oo with the property 
p(T)~  K(p( t ) )  for t -  < T, i.e. it is impossible for the trajectory to leave K(p)  at 
any time. For this we consider 

Z :={c ~ >  T > 0  : ( 1 ) p ( t ) e K ( p ( 0 ) ) , V t :  0 <- t<- T 

(2) ::1 e > 0: p( T+ z) ~ K(p(O)), V'c: 0 < "r <_ e} 

and To := sup T~z T. Assume that Z # Q, then there exist such T and because of 
the closedness of K(p(O))= K ( p ) ,  Toe Z. The existence of E(p(O)) guarantees: 
3 3 > 0  with p(T+'r ' )cK(p(To)) ,  V,r': O<_z'<_3 and therefore p(To+T')c 
K(p(0)) .  But for an arbitrary z'~ (0, min {e, 3}] this provides a contradiction to 
condition (2), which To as belonging to Z has to fulfill. Therefore Z must be 
empty, which means indeed that the trajectory always stays in K(p) .  (The 
boundary is also allowed.) [] 

Now we show that K(p)  is just exhausted by the cc-processes: 

Lemma 6. LJcc {p(t)},_>o = K(p)  

Proof. Considering Lemma 5 we have only to prove that every point of K(p)  is 
attainable by a cc-process. We mentioned above that every point of K(p)  can 
be reached by a finite number of two-body exchanges, and they are special 
cc-processes (compare Lemma 4). [] 

Therefore we can summarize: 

Theorem 5. Let p c 5P~. Then KW(p) =- Kg(p)  =- KCC(p)--: K(p) .  
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These identities and the properties mentioned in Theorem 4 are the main results 
of  this paper. More about this topic, especially about the (n = 3) - case can be 
found in [10]. 

5. Some consequences and further open questions 

(1) We note that G(p) is the set of  states attainable from p by in general 
discontinuous c-processes. Therefore Theorem 2'" means that G(p) and K(p) 
coincide locally. From a global aspect the additional requirement of continuity 
seriously restricts the set of attainable states, namely to K(p). 

Furthermore it makes sense to now introduce a sharper partial order than the 
"more mixed than" one in the following manner: 

Assume that p, q ~ 5r Then we define: q > > p  (in words: q is "more c-mixed 
than" p), iff qc K(p). 

Obviously this relation is well adopted to consider continuous processes within 
5e,, because permutations - as allowed in the '"> "-concept and which destroy 
continuity - are forbidden here. 

(2) The non-convexity of K(p) is a surprise: from the mathematical point of 
view one knows and (thus) expects convexity arguments in this field. From a 
more physical point of  view one is forced to overthink the intuitive picture of 
heat conduction attainability which we will illustrate in the following manner: 
consider two identical initial distributions p, then apply to them two different 
w-processes /'1 and T2, i.e. T1(p) =/~ and T2(p) =/~ with/~r  then mix/~ and 
p convexly, e.g. totally. You obtain two identical distributions q = 
�89 +/~1,/~2 +/~2/~3 +/~3). Because of the non-convexity it could happen that q 
is not attainable from p although/~ and /~ of which q was mixed had been 
attainable. We give an example: p = (p~, p2, p3), 

4 '  8 ' 8 ' 

and 

q = 2  - ' s ' s K ( p ) .  

Problem 3. Is it possible to find an interesting "Gedankenexperiment"  or even 
a technical application for this effect? 

(3) The identity KW(p) =- KCC(p) can be taken as origin for considerations about 
the "replaceability" of  co-processes. Indeed this means that every co-process can 
be replaced by a w-process in the following sense: assume a cc-trajectory from 
p to q with some arbitrarily chosen "check-points" on it. Then it is always possible 
to find a w-trajectory from p to q that contains all check-points. As an application 
of this we have: intuitively we might imagine any cc-process to be essentially a 
heat-conduction process. An example is 
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Lemma 7. There is no cc-process that is also a cyclic one. 

A second application has already been tacitly used by us, namely that it is enough 
to consider only two-body exchanges: Heat exchange with more than two bodies 
involved is also a cc-process and therefore it can also be replaced by pure two-body 
exchanges. On the other hand one now clearly sees that the considerations on 
the special physical system presented in Sect. 1.2 were no more than a useful 
instrument to construct K ( p ) .  

(4) As already mentioned, the class of cc-processes is a very large one. We 
complete the two examples from the introduction by adding the conditions for 
their coefficients here: 

(i) d / d t p i = ~  Likp k with L,<-O, Vi  
k 

Lik >-- O, i r k and 

Y~ Lik = O, Vk. 
i 

(ii) d / d t p ' :  ~, ( A i j k t p k p  t -- Ak l i jP ' f f  j )  
jkl 

w i t h  Ai jk l  >~ 0, a n d  

Aukt = ~ Ai~kt = 1. 
ij jk  

The Boltzmann-Carleman equation (ii) is remarkable because of its non-linearity 
(see [4]). 

(5) Similar to one definition of K ( p )  as the "two-body exchange future of p"  
one can also consider the "two-body exchange past of p".  It turns out that this 
set is also non-convex. 

We conclude with a remark concerning the matrix set K, 

K : =  {T:  T = ~ i  Ti' TiC T2(n)}" 

This set is non-convex and non-closed. 

Problem 4. Find out more about the structure of K ! 
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